Use Smart High-Side Drivers to Keep Things from Exploding

Working for a semiconductor company is a lot of fun. I’m happy to say I’ve worked for five of them, not counting my consulting work. Everything is leading-edge or bleeding-edge – it’s a very edgy business. The 1990s were especially edgy as that was the wild west of the semiconductor business, when boundaries were broken every week and breakthroughs in semiconductor physics seemed like magic.

I’m known for keeping a quote log in those days. This is a written record of some of the silliest – or strangest – quotes or dialogs ever heard in the business world (“What time is the 10 o’clock meeting?”). Semiconductor professionals say some of the strangest things.

Like the time an analog semiconductor design engineer stood up in a meeting with a major automotive customer and announced, very slowly, “I have got three things to say. The first, is not important. The second, is company private so I cannot tell you. And the third, I forgot,” – then he sat down. You can imagine the look on the faces around the table.

Semiconductors smarten up; people sometimes don’t

Sometimes the most memorable moments come from discussions with product people at the factory. I was program manager for a neat little high-side driver. These new smart semiconductors were just becoming popular because they saved so much design effort for the engineer. High-side drivers are smart little things that can also protect against circuit and device faults, including short-circuit detection.

It was during the wild west era that I was on the phone with a European QA test engineer. I’d learned to respect the test engineers as some of the brightest people in any company. They are crucial when the first engineering samples of a chip are available because the QA engineers decided what the part can and cannot do. The conversation with the QA engineer went like this:

Bill: “So, what’s the status of our newest high-side driver?”
QA: “Well, there is a problem with the short-circuit protection.”
Bill: “Uh, what problem?”
QA: (long pause) “The part, it explodes.”
Bill: “WHAT?!?!”
QA: “But don’t worry, we have a test to see if a part is good.”
Bill: “Wait, what test, what are you…?”
QA: (proudly) “We short circuit the part. If it does not explode, it is good!!!”

Name of company and product withheld to protect the guilty (you know who you are). I later learned they would short each high-side driver on the test rig, and if it exploded the QA engineers would all cheer, then take a sip of an adult beverage. (Drinking and testing are still not advisable.)

Now every time someone mentions a high-side driver, I smile.

Modern high-side drivers are even smarter, and besides short-circuit protection they can detect faults like a broken connection between the load and ground, and potential thermal faults.

Figure 1: The STMicroelectronics ISO8200BQ comes in a TFQFPN32 package with a nice fat VCC pad that can handle 45 volts at 5.6 amps. This allows the octal high-side driver to supply up to 0.7 amps to each of the eight channels. (Image source: STMicroelectronics)

STMicroelectronics has always had an impressive range of high-side drivers that interface easily to most microcontrollers. For example, the ISO8200BQ is an octal high-side driver with more smarts than some of people I worked with in the 90s. Each of the eight channels has a rated RDS(ON) of 0.11 Ω at 25°C and can handle 0.7 amps regardless of whether the load is inductive, capacitive, or resistive. Yes, it has short-circuit protection, so it won’t explode. Each channel also has over-temperature protection, so it won’t overheat.

The ISO8200BQ interfaces easily to the 8-bit port of most microcontrollers for independent control of each channel and requires only a few external components. The ISO8200BQ has a global output enable OUT_EN. When pulled low, this disables all the outputs. This increases the safety of the application by allowing the microcontroller to turn off all the loads, useful in an industrial situation to prevent things from exploding.

The device also has an active low LOAD (LOAD\) signal that latches all the data on the input pins IN[1:8] into the channel logic buffers. When the LOAD\ signal is low, data passes into the eight channel logic buffers. When the LOAD\ goes high, all the data is latched into the buffers. The high-side driver outputs OUT[1:8] match the state of the eight channel logic buffers when the active-low SYNC (SYNC\) signal goes low, and the driver states are latched when SYNC\ goes high.

If both LOAD\ and SYNC\ are held low all the time, the ISO8200BQ behaves like a common high-side driver, and signals on IN[1:8] are immediately reflected on OUT[1:8]

Galvanic isolation makes everything a whole lot safer by electrically separating the 5 volt logic side of the device from the high voltage 48 volt side of the device. This increases the reliability and safety of the circuit.

Now it’s easy to drive any kind of load, and if it does not explode, it is (still) good!

關於作者

Image of Bill Giovino

Bill Giovino 是電子工程師,擁有美國雪城大學的電機工程學士學位,也是少數從設計工程師跨足現場應用工程師,再到技術行銷領域的成功典範之一。

Bill 過去 25 年來熱衷於向科技和非科技業的對象推廣新技術,包括 STMicroelectronics、Intel 和 Maxim Integrated 等多家企業。Bill 在 STMicroelectronics 任職期間,曾協助領導該公司順利進軍微控制器領域。在 Infineon 任職時,則策劃出該公司首款在美國汽車業大受歡迎的微控制器設計。Bill 目前是他個人公司 CPU Technologies 的行銷顧問,曾協助諸多企業讓表現不佳的產品重獲市場青睞。

Bill 更是採用物聯網的先驅,包括在微控制器中首次納入完整的 TCP/IP 堆疊。Bill 致力於推廣「用教育促成銷售」的理念,也認可在線上推銷產品時有清楚完整文字說明的重要性。他在 LikedIn 熱門的半導體銷售和行銷群組中擔任管理員,也擁有深厚的 B2E 知識。

More posts by Bill Giovino